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Abstract 

The classical "Harary-Read numbers" for catafusenes (catacondensed simply connected 
polyhexes) are reproduced without using generating functions. A complete (mathematical) 
solution is given for the distribution of these numbers over the different symmetry 
groups to which the catafusenes belong. 

1. In t roduct ion  

The classical paper by Harary and Read [1] from 1970 is an outstanding piece 
of work in the area of polyhex enumeration. The objects which are enumerated 
therein are the catacondensed simply connected polyhexes, which are referred to as 
catafusenes [2]. They are without internal vertices and may be either branched or 
unbranched. It should especially be noted that the catafusenes contain both the 
geometrically planar benzenoids and nonplanar helicenes. 

Harary and Read [1] achieved a general mathematical solution for the numbers 
of catafusenes with given h values in terms of a generating function. Here, h is used 
to denote the number of hexagons. The "Harary-Read numbers", a term coined by 
Knop et al. [3], have been quoted many times [2-13].  They are also implied in a 
work of Herndon [14] and others [15]. Furthermore, the pertinent theory was exploited 
by Gutman [16]. 

It has become customary to classify polyhexes according to the symmetry 
groups to which they belong [13, 17]. For the numbers of unbranched catafusenes, 
a complete mathematical solution is known in terms of explicit formulas [18]. They 
give full information about the symmetry groups of interest, which are  D2h, C2h, 
C2v and C~ apart from D6h , tO which benzene (h = 1) belongs as the only (and trivial) 
catacondensed benzenoid. For the branched catafusenes, and hence also for the 
catafusenes in total, a corresponding symmetry distribution has not been worked out 
before; the possible symmetry groups for branched catafusenes are  O3h, C3h, C2h, 
C2v and C~. 
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The nonplanarity of helicenes is not taken into account when the symmetry 
group is defined. The system below, for instance, is attributed to the Ca,, symmetry. 
The fight-hand drawing is a dualist [18] representation. 

p 

) \ 

In the present paper, a complete mathematical solution is given for the numbers 
of nonisomorphic catafusenes, including their distribution into the symmetry groups. 
This goal was reached by elementary combinatorial methods, without invoking 
generating functions, and without explicit use of P61ya's theorem, which Harary and 
Read [1] are referring to. Nevertheless, all the numbers for different classes of 
catafusenes from our main reference [1] were reproduced [19]. 

2. Symbols and definitions 

Below we give a survey of applied symbols (in alphabetical order) with their 
definitions. Most of them are consistent with the notation of Harary and Read [1]. 
When there are differences, the corresponding Harary and Read symbols are given 
in brackets. 

a 

A 

b 

C 

D 

E 

F 

G 

h 

1 

# hexagons in a single linear chain as a fragment of a catafusene; 

# Cs catafusenes; 

# hexagons in a fragment (arm) of a catafusene; 

# C2h catafusenes; 

# D2h catafusenes; 

F - G [ F  - h]; 

# hexagon-rooted catafusenes, where the reflection in a (mirror) plane is a 
forbidden symmetry operation; 

#unrooted catafusenes, where reflection in a plane is forbidden [h]i 

# hexagons In]; 

# D6h catafusenes (trivial); 
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M (a) 

M (b) 

R 

T 

U 

W 

X: 

# catafusenes belonging to C2~(a) [20], where the twofold symmetry axis 
(C2) cuts edges; 

# catafusenes belonging to C2v(b) [20], where C 2 goes through vertices; 

# C3h catafusenes; 

# O3h catafusenes; 

# edge-rooted catafusenes; 

# catafusenes with a plane of  symmetry (D6h + D3h + D2h + C2v) ;  

x = h In] for an edge-rooted catafusene, x = h - 1 In - 1] for a hexagon-rooted 
catafusene; 

variable in a generating function [x]. 

3. Catafusenes  rooted at an edge 

In an "edge-rooted" catafusene, a unique edge ("root-edge") in a unique 
hexagon is distinguished. It is not allowed to add any other hexagon adjacent or 
incident to the root edge. Neither is any symmetry operation allowed. Hence, for 
two hexagons for instance, there will be three rooted naphthalenes: 

Here, the root edge is indicated in bold. Figure 1 shows the forms of  the edge-rooted 
catafusenes (as dualists) for two and three hexagons. There are two types of  these 
systems, S (single) and D (double) [1]. In fig. 1, all the systems but the last one 
are of  the S type; the last one is D. 

The numbers of  edge-rooted catafusenes with x hexagons each, U~, can be 
obtained for arbitrarily large x by the following recursive algorithm [1]: 

U o = U 1 = 1, U 2 = 3 U I ,  

x - 1  

Ux+l = 3Ux + Y~ UiU~-i; 
i=1 

x =  2 , 3 , 4 , 5  . . . .  (1) 

The solution (1) is consistent with the generating function deduced by Harary and 
Read [1]. One has 
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a:=2 / ' \  

7 L  

Fig. 1. Forms of the edge-rooted catafusenes 
with two and three hexagons. The dualist 
representation is employed. A white circle 
represents the hexagon containing the root edge. 

1 + ( 1 / 2 ) ~  -1 [1-- 3:-- (1-- ~)1/2(1-- 5~) 1/21--- ~ U i:i--- 1 q-~q- 3~ 2 
i=0 

+ 10~ 3 + 36~ 4 + 137~ 5 + 543~ 6 + 2219~ 7 + 9285~ 8 + 39587~'9 

+ 171369~10+ 751236~:1  + 3328218~:2  + 14878455~ :3 

+ 67030785~14 + 304036170~15+  . . . .  (2) 

The Harary and Read function was only modified by adding the constant term in 
order to take care of  U0 = 1. It is convenient to make this definition in view of  the 
deductions in the following. 
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o 

4.1~ 

Unrooted symmetrical catafusenes 

REGULAR HEXAGONAL SYMMETRY, D6h 

The trivial result reads: 

1 1 = 1 ,  / h = 0 ;  h > l .  (3) 

4.2. REGULAR TRIGONAL SYMMETRY, D3h 

The catafusenes of D3h symmetry were treated by the same method as used 
in a computer algorithm [21 ] for enumeration of the catabenzenoids (without helicenes) 
of D3h symmetry. The catafusene (like the catabenzenoid) consists of three identical 
arms attached to a central hexagon. Let the number of hexagons in one arm be 

b = a + 2x, (4) 

where a is the number of hexagons in a single linear chain (acene). The total 
number of hexagons of the D3h system is 

h = 3b + 1. (5) 

All such non-isomorphic systems are obviously generated by taking all possible a 
values in conjuction with appropriate x values and in each case using the Ux edge- 
rooted catafusenes. Specifically, for a given b, use a = b, b - 2, b - 4 . . . . .  down 
to 1 or 2, depending on whether b is odd or even, respectively. The corresponding 
x values (in reverse order) are 0, 1, 2 . . . .  up to ( b -  1)/2 or (b - 2)/2 for b odd or 
b even, respectively. In conclusion, the number of non-isomorphic D3h catafusenes 
with h hexagons (Th) becomes 

L(b - l)/2J 

T3b+l = Z Ui; b= 1 ,2 ,3 ,4  . . . .  (6) 
i=o 

and finally in terms of h: 

L(h-4)16J 
Th= ~., Ui; h = 4 , 7 , 1 0 , 1 3  . . . . .  

i=0 

Th = 0 otherwise. (7) 

4.3. DIHEDRAL SYMMETRY D2h 

The treatment of  the D2h catafusenes is as simple as in the case of D3h and 
similar to it. Let the number of hexagons be 
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h = a + 4x (8) 

when the system under consideration has a central linear chain of  a hexagons. Then, 
a = h, h - 4, h - 8, h - 12 . . . . .  ami n, where ami n = 2, 3, 4 or 5. The corresponding 
maximum value of x appears as the upper summation index in the result given 
below for the number of  catafusenes with D2h symmetry, viz. O h. 

D1 = 0 ,  

L(h -2)/4J 
Dh = Z Ui; h= 2 , 3 , 4 , 5  . . . . .  (9) 

i=0 

Notice that the actual numbers D h are the same as T h, but distributed in a 
different way in relation to the h values. 

4.4. CENTROSYMMETRY, Czh 

The case of  C2h symmetry is not treated here in detail for the sake of  brevity, 
but was solved by the same kind of  combinatorial reasonings as described above. 
The net result is: 

CI = 0 ,  

1 I 
Ch = T UL h/2 J -  ~ 

k(h -2)/4J 
1 (U[h/2J--Oh); ~.~ U i =  "~ 

i=0 
h =  2 , 3 , 4 , 5  . . . . .  (10) 

4.5. NON-REGULAR TRIGONAL SYMMETRY, C3h 

For the C3h symmetry, the numbers (Rh) are the same as Ch but distributed 
in a different way in relation to h. It was found that: 

Rh = C2(h- 1)/3; 

Rh=O 

h = 4 , 7 ,  10, 13 . . . . .  

otherwise. (11) 

4.6. MIRROR SYMMETRY OF THE TYPE C2v(a ) 

The catafusenes of  C2v symmetry are subdivided into two classes [20], identified 
by C2v(a) and C2v(b). In the former case (a), the twofold symmetry axis cuts edges 
(perpendicularly). Let the pertinent number of  non-isomorphic catafusenes as a 
function o f h  be denoted by M (a). Below we write down the result which was obtained, 
and provide some explanations afterwards. 
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M~a) = O, 

Mh (=)= Ch -Th,  h = 2 , 4 , 6 , 8  . . . . .  (12) 

M ( a )  =Ch+Uh/2_Th+l. h=2,4,6,8, .  h + l  . . . .  

For even-numbered h, one finds the same number of catafusenes belonging to C2v(a) 
and D3h taken together on the one hand, and the number of C2h catafusenes on the 
other. A one-to-one correspondence between the systems of  the two classes can be 
established, as is exemplified for h = 6 below; MI =) = C 6 = 4 (T 6 = 0). Dualists are 
employed: 

/ ) 
/ ( 

/ . )  " \  ) 

/" / 
; / / ,  , c~ 

For odd-numbered h, one again finds a one-to-one correspondence between the 
C2~(a) + D3h and the C2h systems. However, for h > 1 some C2~(a) systems appear 
in addition, namely those which consist of two isomorphic edge-rooted catafusenes 
attached to one central hexagon. To take h = 5 as an example, one has C 5 = 1 and 
a corresponding Czv(a ) system. In addition come the U 2 = 3 systems built up from 
the edge-rooted naphthalenes (cf. fig. 1 and the accompanying text): 
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4.7. MIRROR SYMMETRY OF THE TYPE Czv(b) 

The catafusenes belonging to C2v(b ) each have a twofold symmetry axis which 
passes through vertices. There is a perfect one-to-one correspondence between these 
systems and those of the C2h symmetry; one only has to flip one of the fragments 
(an edge-rooted catafusene) around in a kind of a c i s / t r a n s  isomerism. Therefore: 

Mh Cb) = C h . (13 )  

4.8. TOTAL NUMBER OF CATAFUSENES WITH A PLANE OF SYMMETRY 

W h = I h + T h + D h + M (a) + Mh (b). (14) 

This quantity, which now is accessible through eqs. (3), (7), (9), (12) and (13), is 
consistent with the appropriate generating function from Harary and Read [1]: 

= (1 /2)~-2(1  + 2 ~ ) [ 1 - - 3 ~  2 - ( 1 - ~ 2 ) 1 / 2 ( 1 - 5 ~ 2 )  1/2] 

: ~ Wi~ i:  ~+~2+2~3+3~4+6~5+ 1 0 ~ 6 + 2 0 ~  

i=1 

+ 36~ 8 + 72~ 9 + 137~1°+ . . . .  (15) 

Tiffs expansion can easily be extended (up to W31, actually) by mean of the coefficients 
given in eq. (2) and the relations [1]" 

Wh = Uhl2, Wh + I = 2Wh; h = 2, 4, 6, 8 . . . . .  (16) 

5. Catafusenes rooted at a hexagon 

5.1. PARTITIONING 

Harary and Read [1] have distinguished betwen four types of "hexagon- 
rooted" catafusenes: (i), (ii), (iii) and (iv). In such a system, a unique hexagon (the 
"root hexagon") is distinguished. The four types are exemplified below by means 
of the same systems as were depicted by Harary and Read [1], but here represented 
in terms of dualists. A white circle indicates the root hexagon. 
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(i) (i i) ( i i i )  (iv) 

The following formulas were found for the numbers within each category. 
For the sake of  brevity, the results are given here without derivation, but at least 
those for types (i) and (ii) are obvious. The symbol x denotes the number of hexagons 
when the root hexagon itself is not counted. 

5.2.  T Y P E  (i) 

Fx + 10) = Ux. 

Here, the trivial value U 0 = 1 takes care of the root hexagon alone. 

(17) 

5.3. T Y P E  (ii) 

Fl(ii) = F2(ii) = 0, 

x - 1  

Fx+l ( i i )=  ~ UiUx-i; x = 2 , 3 , 4 , 5  . . . . .  (18) 
i=1  

It should be understood that the reflection in a plane is a forbidden symmetry 
operation as a part of  the definition of this class. 

5.4.  T Y P E  (iii) 

Fl(iii) = Fe(iii ) = 0 ,  

F3(iii) = 1, 

Fx + 1 ( i i i )  = 

(x - 1 )/2 

Z UiVx-i; 
i = l  

( x / 2 ) -  1 

x = 3 , 5 , 7 , 9  . . . . .  

1 Fx+l(iii)= ~Ux/2(Ux/2+ l)+ ~., UiUx-i; x = 4 , 6 , 8 , 1 0  . . . . .  (19) 
i=1  
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5.5. TYPE (iv) 

F l ( i v )  = F 2 ( i v )  = F 3 ( i v )  = 0, 

F4( iv)  = 1, 

' 2)  ~+1 (iv)= ~-G/3 (u;~3 + 

+ E x2i 1 Z U?Vx_2, + v, Z uj vx-,_; 
i=1 j = i + l  

o t h e r w i s e :  

; x = 6 , 9 , 1 2 ,  15 . . . .  ; (20)  

[x/3]- 1 [- x - 2 i -  1 
f x + l  ( i v ) =  E [ U i 2 U x - 2 i + U i  Z UjUx- i - J  

i=1 j = i + l  

5.6. TOTAL FOR HEXAGON-ROOTED CATAFUSENES 

F h = Fh( i )  + Fh(i i )  + Fh(ii i  ) + Fh( iv) .  (21)  

T h e  i n d i v i d u a l  n u m b e r s ,  o b t a i n e d  f rom eqs.  ( 1 7 ) - ( 2 0 ) ,  are l i s ted  in t ab le  1 

up  to h = 15. T h e  to ta ls  (Fh) are c o n s i s t e n t  wi th  the a p p r o p r i a t e  g e n e r a t i n g  f u n c t i o n  

Table 1 

Partitioned numbers of hexagon-rooted catafusenes (mirror reflection not allowed) 

h Fh(i ) Fh(ii ) Fh(iii ) Fh(iv ) 

1 1 0 0 0 
2 1 0 0 0 
3 3 1 1 0 
4 10 6 3 1 
5 36 29 16 3 
6 137 132 66 19 
7 543 590 300 107 
8 2219 2628 1314 543 
9 9285 11732 5884 2709 

10 39587 52608 26304 13246 
11 171369 237129 118633 63918 
12 751236 1074510 537255 306345 
13 3328218 4893801 2447172 1461957 
14 14878455 22395420 11197710 6959700 
15 67030785 102943815 51473017 33092280 
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from Harary and Read [1]. It should not be necessary to reproduce the algebraic 
form of this function here; below we give only a part of its expansion. 

2 F/~i : ~+ ~2 + 5~3 + 20~4 + 84~5 + 354~6 
i=1 

+ 1540~ 7 + 6704~ 8 + 29610~ 9 + 131745~ 1° + 591049~ ll 

+2669346~12+12131148~13+55431285~14+254539897~15+ . . . .  (22) 

The individual numbers (table 1) may of course also be checked (as we have done) 
against appropriate parts of the generating function under consideration. 

6. Unrooted asymmetrical catafusenes 

6.1. A U X I L I A R Y  N U M B E R S  

Following Harary and Read [1], we have produced (in an alternative way) 
the numbers which bring us from F to G, where G pertains to all unrooted catafusenes 
where reflection in a plane is a forbidden symmetry operation. Then, 

G h = F h - E h ,  (23) 

where the E h numbers are specified below, again without the derivation. 

E l = E 2 = 0 ,  

(h - 1 )/2 

Eh = Z UiUh- i ;  h =  3 ,5 ,7 ,9  . . . . .  
i=1 

1 
E h = ~ Uh/2(Uh/2 - 1)+ 

( h / 2 ) -  1 

~ .  U i U h - i ;  h = 4 , 6 , 8 , 1 0  . . . . .  (24) 
i=1 

6.2. A S Y M M E T R I C A L  S Y S T E M S  C, 

1 
A h = ~ ( a h - W  h ) - R  h - C  h. (25) 

. Unrooted catafusenes in total 

The final Harary-Read numbers are now, of course, obtained by: 

Hh = 21 (G h +Wh ) =  lh + T  h + R  h + D  h + C  h +M(ha)+M(hb)+ah (26) 
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Table 2 

Numbers of non-isomorphic catafusenes, classified according to symmetry: [/D6h, T/O3h, R/C3h, D/D2h, 
C/Czh, M(al/Czv(a), MCbl/C2v(b), A/C s, H/total 

h I T R D C M (~) M (hI A H 

1 1 0 0 0 0 0 0 0 1 
2 0 0 0 1 0 0 0 0 1 
3 0 0 0 1 0 1 0 0 2 
4 0 1 0 1 1 0 1 1 5 
5 0 0 0 1 1 4 1 5 12 
6 0 0 0 2 4 4 4 23 37 
7 0 1 1 2 4 13 4 98 123 
8 0 0 0 2 17 17 17 393 446 
9 0 0 0 2 17 53 17 1600 1689 

10 0 2 4 5 66 64 66 6486 6693 
11 0 0 0 5 66 203 66 26694 27034 
12 0 O 0 5 269 269 269 110818 111630 
13 0 2 17 5 269 810 269 465890 467262 
14 0 0 0 15 1102 1102 1102 1978032 1981353 
15 0 0 0 15 1102 3321 1102 8481860 8487400 

Table 2 shows the numbers of unrooted catafusenes, distributed over the different 
symmetry groups. It should be needless to say that the totals (H) match perfectly the 
results from tile celebrated final generating function H(~) of Harary and Read [1]. 

As the last equation, we give the summation formula for the total number of 
catafusenes in closed form (for m h when h < 5, see table 2). It is the counterpart of 
the H(~) generating function in the sense that 

H(~) = ~ Hi ~i, (27) 
i=1 

Hh = 21 Uh- 1 + ~1 [1 -- (1)h]UL(h _ l)/2](3UL(h-1)121+ 1) 

1 1 
-- ~- [ l  -- (--l)h]U[h/2J(U[h/2j - l ) +  ~- [3- (--1)h]U[h/2J 

[ (h /2 ) -  I J [ (h /2 ) -  1 ] 
3 1 

+ 5 Z U i U h - i - 1 -  -2 2 UiUh-i 
i=1 i=1 

1 
+ ~ (L(h - 1 ) 1 3 / -  L(h - 2)13_1)UL(h - 1)/3J(U~( h _ 1)/3] + 2)  

1 L(h-2) /3J  [ h-2i-2 ] 
+ 2 Z Ui UiUh-2i-I + Z UjU h_i_j_l ; 

i=1 j = i + l  
h > 5 ,  (28) 

where the Ux numbers are given by eq. (1). 
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8. Conclusion 

In the present work, the "Harary-Read numbers" for catafusenes are re-derived 
for the first time in an alternative way, twenty years after the pioneering work of 
Harary and Read [1]. As an original contribution, the numbers are divided according 
to the symmetries of the systems in question. The task was accomplished by elementary 
combinatorial methods, which led to summation formulas. It is not claimed that the 
present methods are "better" or even simpler than the applications of generating 
functions, which were exploited by Harary and Read [1]. It is supposed, however, 
that the present methods provide a useful alternative. 
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